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§1. Uniformization Theory as a Hodge Theory at Arithmetic Primes

(A.) Uniformization as a Catalogue of Rational Points

We begin our discussion by posing the following elementary problem concerning alge-
braic varieties over the complex numbers (where, roughly speaking, an “algebraic variety
over the complex numbers” is a geometric object defined by polynomial equations with
coefficients which are complex numbers):

Problem: Given an algebraic variety Z over C, it is possible to give some sort
of natural explicit catalogue of the rational points Z(C) of Z?
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To gain a sense of what is meant by the expression “a natural explicit catalogue,” it is
useful to begin by thinking about some basic examples. Perhaps the simplest nontrivial
examples of algebraic varieties are plane curves, i.e., subvarieties of A2

C (two-dimensional
affine space over C) defined by a single polynomial equation

f(X,Y ) = 0

in two variables. In this case, the set of rational points Z(C) of the corresponding variety
Z is given by

Z(C) = {(x, y) ∈ C2| f(x, y) = 0}

Moreover, we can classify plane curves by the degree of the defining equation f(X,Y ). We
then see that the resulting sets Z(C) may be explicitly described as follows:

(1.) The Linear Case (deg(f) = 1): Up to coordinate transformations, this is the
case given by the equation f(X,Y ) = X. In this case, we then obtain an explicit
catalogue of the rational points by:

(0, ?) : C ∼→ Z(C)

(i.e., mapping z ∈ C to (0, z) ∈ Z(C)).

(2.) The Quadratic Case (deg(f) = 2): Up to coordinate transformations (and ruling
out degenerate cases), we see that this is essentially the case where the equation
f(X,Y ) = X ·Y −1. In this case, an explicit catalogue is given by the exponential
map:

exp : C → Z(C) = C×

(In fact, the map may be defined intrinsically, without using coordinate transfor-
mations to render the defining equation in the “standard form” X · Y = 1.)

(3.) The Cubic Case (deg(f) = 3): Up to adding the point(s) at infinity, this is
essentially the case where we are dealing with an elliptic curve E. In this case,
as well, we have a natural exponential map:

expE : TE → E(C)

(where TE is the one-dimensional complex vector space given by the tangent space
to some fixed point – “the origin” – of E). This map allows us to think of E as
being of the form “C/Λ” (where Λ ∼= Z2 is a lattice in C).
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(4.) Higher Degree: If deg(f) ≥ 4, or we wish to consider lower degree cases with lots
of points removed, then we are led naturally to the following notion:

A hyperbolic curve Z is a smooth, proper connected algebraic curve of genus
g with r points removed, where we assume that 2g − 2 + r > 0.

According to the uniformization theorem of Köbe, hyperbolic curves may be uni-
formized by the upper half-plane H

def= {z ∈ C | Im(z) > 0}, i.e., we have a
surjective (holomorphic) covering map:

H → Z(C)

which allows us to think of Z(C) as being of the form H/Γ, where Γ is some
discrete group acting on H.

KOEBE.EPS

(B.) “Intrinsic” Hodge Theories

In the preceding section, we posed the problem of explicitly cataloguing the rational
points of a variety (over C). By looking at various examples, we saw that this problem
may also be worded – in perhaps more familiar terms – as the problem of finding natural
uniformizations of varieties. In the present section, we would like to further refine our
understanding of the problem of finding natural uniformizations/explicit catalogues of
rational points by rewording this problem in terms of the language of “Hodge theory.”

First, let us discuss what we mean in general by the notion of a “Hodge theory.” By
a Hodge theory, we shall mean an equivalence of the following form:

⎛
⎜⎜⎜⎝

algebraic
geometry

(e.g.,
rational
points)

⎞
⎟⎟⎟⎠ ⇐⇒

⎛
⎜⎜⎜⎜⎜⎝

Over C: topology +
differential geometry

Over the p-adics:
pro-p étale

topology + Galois action

⎞
⎟⎟⎟⎟⎟⎠

The most familiar example of such an equivalence is the Hodge theory of cohomolo-
gies. Over C, this amounts to “classical Hodge theory,” i.e., the well-known isomorphism
between the de Rham cohomology of an algebraic variety (which is well-known to be
an algebro-geometric invariant of the variety) and the singular cohomology of the variety
(which is a topological invariant). More recently, the p-adic Hodge theory of cohomolo-
gies has been developed by Fontaine et al. (cf., e.g., [Falt2,3]). This theory asserts an
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equivalence between the (algebraic) de Rham cohomology of an algebraic variety over a
finite extension K of Qp and the p-adic étale cohomology of the variety, equipped with its
natural Galois action (i.e., action of Gal(K)).

This “Hodge theory of cohomologies” is the most basic example of a “Hodge theory”
as defined above. In the present manuscript, however, we would like to consider a different
kind of Hodge theory which we shall call an intrinsic Hodge theory, or IHT, for short.
By an intrinsic Hodge theory, we mean a Hodge theory – i.e., an equivalence of the form
discussed above – in which the invariant which appears on the “algebraic geometry” side
is the “variety itself.”

There are several different ways to interpret the phrase “the variety itself.” In the
present manuscript, we shall consider the following two interpretations:

(1.) The Physical Interpretation: In this interpretation, one takes the phrase the
“variety itself” to mean the “rational points of the variety.”

(2.) The Modular Interpretation: In this interpretation, one takes the phrase the
“variety itself” to mean the “moduli of the variety.”

Note that (it is a tautology of terminology that) a physical IHT essentially amounts to
some sort of explicit description of the rational points of the variety in terms of topology
and geometry. Thus, one may summarize the above discussion as follows:

physical IHT = uniformization of the variety

modular IHT = uniformization of the moduli space of deformations of the variety

Before concluding this section, we make some remarks on the relationship between
the “IHT’s” that we wish to discuss here and the more well-known “Hodge theories of
cohomologies.” First of all, although in general, IHT’s are not the same as Hodge theories
of cohomologies, typically in proving theorems which realize IHT’s, the technical tools of
the corresponding Hodge theory of cohomologies (e.g., in the p-adic case, the techniques
of so-called “p-adic Hodge theory” as in [Falt2]) play an important role. Secondly, in the
case of Gm = V (X · Y − 1) (i.e., Example (2) in §1, (A.)), as well as in the case of elliptic
curves (i.e., Example (3) in §1, (A.)), it just so happens that the first cohomology module
of the curve “is” the curve itself, i.e., in more sophisticated language, in these cases the
curve in question is a 1-motive. Thus, in these cases, it turns out that the notions of IHT
and Hodge theory of H1 coincide. In particular, in these cases, the well-known Hodge
theory of H1 already provides a uniformization of the curve. Note that this differs quite
substantially from the case of higher genus (Example (4) in §1, (A.)).
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(C.) Completion at Arithmetic Primes

So far in our discussion, we have ignored the important issue of what sort of ground
field should be considered in our discussion of uniformizations/explicit catalogues of ratio-
nal points/IHT’s. In the examples of §1, (A.), we considered the situation over the complex
number field, since this is the most elementary and well-known example of a ground field
over which IHT’s may be realized.

Of course, ideally, one would like to realize IHT’s over any field, for instance, over a
number field (i.e., a finite extension of Q) – a case for which the problem of determining
the set of rational points explicitly is of prime interest. Unfortunately, however, typically,
in order to realize an IHT (or, indeed, any sort of “Hodge theory”), one must work over a
base which is complete with respect to some sort of “arithmetic prime.” The three main
examples of this sort of base are the following:

(i.) the complex number field C (this also covers the case of R by working with
objects over C equipped with an action of complex conjugation, i.e., of Gal(C/R))

(ii.) a p-adic field K (i.e., a finite extension of Qp)

(iii.) power series over Z – typically arising as the completion of some sort of mod-
uli space at a Z-valued point corresponding to a degenerate object parametrized
by the moduli space.

Indeed, all completions of number fields fall under cases (i.) and (ii.). Thus, if one is
ultimately interested in rational points of number fields, IHT’s over bases as in (i.) and
(ii.) are of natural interest. Also, since the coefficients of the powers series appearing in
(iii.) are integers, case (iii.) is also of substantial arithmetic interest.

In the following discussion, the following principle will serve as an important guide:

Guiding Principle: For every type of arithmetic prime (i.e., cases (i.), (ii.), and
(iii.) above), one expects that there should be a canonical uniformization theory
at that prime.

In general, however, one does not expect that the canonical uniformization theories at
different primes should be compatible with one another. We will return to this point in
more detail later.

In terms of types of varieties, the main cases in which one has well-developed physical
and modular IHT’s are the following:

(1.) abelian varieties

(2.) hyperbolic curves.

The physical and modular IHT’s in these cases may be roughly summarized in the following
charts:
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(1.) Abelian Varieties
C p-adic Degenerate Object

exponential map
of abelian varieties/

Siegel upper
half-plane

uniformization

Tate’s
theorem/

Serre-
Tate

theory

Schottky
uniformizations

of Tate/
Mumford

(2.) Hyperbolic Curves
C p-adic Degenerate Object

Fuchsian
uniformization/

uniformizations of
Teichmüller
and Bers

§2 (anabelian
conjecture)/

§3 (p-adic
Teichmüller

theory)

formal
algebraic
Schottky

uniformization
of Mumford

Of these two examples, undoubtedly the example of abelian varieties is the more
well-known. Over C, the exponential map of an abelian variety gives a uniformization of
the abelian variety by a complex linear space. This generalizes Example (3) of §1, (A.).
Moreover, by using the periods that one obtains from this uniformization, one obtains
a uniformization of the moduli space of abelian varieties by the Siegel upper half-plane.
Thus, we see both the physical and modular aspects of the IHT of abelian varieties in
evidence.

In the p-adic case, the IHT of an abelian variety essentially amounts to the p-adic
Hodge theory of H1 of the abelian variety. Although the p-adic Hodge theory of H1

of an abelian variety has many different aspects, most of these may be traced to the
fundamental paper of Tate ([Tate]) in the late 1960’s. In this paper, the main theorem
(“Tate’s theorem” in the chart) states that homomorphisms between formal groups (e.g.,
the formal groups arising from abelian varieties) over p-adic fields are essentially equivalent
to homomorphisms between the corresponding Tate modules. In some sense, this result is
the analogue for abelian varieties of the main theorem (Theorem 1) of §2 below, and may
be regarded as a sort of physical IHT for abelian varieties. On the other hand, the modular
aspect of the IHT of abelian varieties may be seen most easily in Serre-Tate theory, which
gives rise to p-adic parameters on the moduli space of abelian varieties that are very much
analogous to the Siegel upper half-plane uniformization in the complex case.

Finally, in a neighborhood of a point in the moduli space corresponding to a degen-
erating abelian variety, one has the theory of Tate curves, generalized by Mumford and
Faltings/Chai ([FC]). Moreover, it turns out that in the case of abelian varieties, the com-
plex, p-adic, and degenerating object theories are all compatible with one another. For
instance, if one specializes the uniformizing parameters that one obtains on the moduli
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space in a neighborhood of a point corresponding to a degenerating abelian variety to a p-
adic (respectively, complex) base, one obtains parameters compatible with the Serre-Tate
parameters (respectively, the Siegel upper half-plane uniformization).

Next, we consider the case of hyperbolic curves. Over C, the physical aspect of the
IHT of hyperbolic curves (cf. Example (4) of §1, (A.)) essentially amounts to the Fuchsian
uniformization. Then just as the exponential map uniformization of an abelian variety
“induces” the Siegel upper half-plane uniformization of the moduli space of abelian vari-
eties, the Fuchsian uniformization of a hyperbolic curve “induces” the Bers uniformization
of the moduli space of hyperbolic curves (cf. §3, (A.) below, as well as the Introduction of
[Mzk4]).

In a neighborhood of a point in the moduli space corresponding to a totally degenerate
(proper) hyperbolic curve, one has the theory of [Mumf]. Note, however, that this theory
is not compatible with the theory of the Fuchsian uniformization in the following sense:
If one specializes the (Z-coefficient) power series in the base ring to some C-valued point
in a neighborhood of a point in the moduli space corresponding to a totally degenerate
curve, the resulting uniformization over C that one obtains is the so-called Schottky uni-
formization of the curve. This uniformization is completely different from the Fuchsian
uniformization.

Finally, we come to the p-adic case. It seems that the IHT of p-adic hyperbolic curves
has not been studied extensively until relatively recently ([Mzk1-5]). Thus,

It is the goal of this manuscript to report on recent developments concerning the
intrinsic Hodge theory (IHT) of p-adic hyperbolic curves.

The physical aspect, which concerns a theorem (Theorem 1) that gives a strong solution to
Grothendieck’s anabelian conjecture, will be the topic of §2. The modular aspect, which
concerns a theory – which we call p-adic Teichmüller theory – which may be regarded as
either the hyperbolic curve analogue of Serre-Tate theory or the p-adic analogue of the
theory of the Fuchsian and Bers uniformizations, will be discussed in §3. We remark here
that this p-adic Teichmüller theory is not compatible with the specialization of the theory
of [Mumf] to the p-adic case. This may disappoint some readers, but is, in fact, natural
in view of the fact that even over C, the specialization of the theory of [Mumf] to the
complex numbers is not compatible (as remarked above) with the theory of the Fuchsian
uniformization. Moreover, it is in line with the general Guiding Principle discussed above
that to each sort of arithmetic prime there should correspond a natural uniformization
theory of hyperbolic curves. Thus, it seems to the author that it is meaningless to argue as
to whether it is the specialization of the [Mumf] to the p-adic case or the theory of [Mzk1-4]
which is the “true” p-adic analogue of the Fuchsian uniformization. That is to say, it seems
more natural to the author to regard the theory of [Mumf] as the “true” analogue of the
Fuchsian uniformization at the “degenerating object prime,” and the theory of [Mzk1-4]
as the “true” analogue of the Fuchsian uniformization at “the prime p.”
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